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ABSTRACT

Phase-diversity techniques provide a novel observational method for overcomming the
effects of turbulence and instrument-induced aberrations in ground-based astronomy. Two

implementations of phase-diversity techniques that differ with regard to noise model, esti-

mator, optimization algorithm, method of regularization, and treatment of edge effects are
described. Reconstructions of solar granulation derived by applying these two implementa-
tions to common data sets are shown to yield nearly identical images. For both implemen-

tations, reconstructions from phase-diverse speckle data (involving multiple realizations of

turbulence) are shown to be superior to those derived from conventional phase-diversity data

(involving a single realization). Phase-diverse speckle reconstructions are shown to achieve
near diffraction-limited resolution and are validated by internal and external consistency tests,

including a comparison with a reconstruction using a well-accepted speckle-imaging method.

Subject headings: methods: observational, techniques: image-processing, Sun: granula-

tion



1. Introduction

An important goal in ground-based astronomy is to

improve the angular resolution that can be achieved.

The angular resolution is nearly always limited by

phase aberrations introduced by atmospheric turbu-
lence. For the special case of ground-based solar as-

tronomy, the spatial resolution is typically limited to

about 05.%for short-exposure images (_< 20 ms) and to

about 1_._0for long-exposure images (_ 1 s). Many ba-

sic processes on the sun, however, take place at scales
below 1_._0. The photon mean free path in the lower

photosphere corresponds to about 0_/1 at disk center.

Magnetic structures may occur on even smaller scales.
For example, magnetic elements outside of sunspots

have typical diameters smaller than 0_/2 (Keller 1995).

Despite their small size, these small structures are

believed to play an important role in large-scale phe-

nomena such as the solar magnetic dynamo or irra-
diance variations. To understand a variety of solar

phenomena, it is, therefore, indispensable to reach a

spatial resolution well below the seeing limit and pos-
sibly approaching the diffraction limit of existing and

future, large solar telescopes.

A number of sophisticated techniques have been
conceived to combat the deleterious effects of atmo-

spheric turbulence in astronomical imaging in general.

Among these are speckle imaging, phase diversity, and
phase-diverse speckle imaging. In this paper we eval-

uate the use in solar astronomy of phase-diversity and

phase-diverse speckle, referred to jointly as phase-

diversity techniques. To undertake this evaluation,

we have applied phase-diversity techniques to solar-

granulation data collected with the Swedish Vacuum
Solar Telescope (SVST) on La Palma. A subset of

these data was also processed with a conventional

speckle-imaging method to demonstrate consistency
between accepted and novel restoration techniques.

Phase-diversity techniques are particularly attractive

for solar astronomy because (1) they require relatively

simple and inexpensive instrumentation, (2) they per-
form well with relatively few images in high-signal

regimes, (3) they lead to a joint estimation of the ob-
ject and the wavefront, and (4) they obviate the need

for complicated calibration.

In the following section we summarize three rele-

vant fine-resolution imaging techniques: conventional
speckle imaging, phase diversity, and phase-diverse

speckle. Phase-diversity techniques, including phase

diversity and phase-diverse speckle, have been imple-

mented differently by the Environmental Research In-

stitute of Michigan (ERIM) group and researchers at
the Stockholm Observatory that operate the SVST

(referred to herein as the SVST group). These im-
plementations are described in Section 3. Section 4

provides details of the data collection and processing.

Results derived from applying phase-diversity tech-

niques to various data subsets are presented in Sec-

tion 5. A speckle restoration is also included in this
section to provide an external reference. Conclusions

regarding the suitability of phase-diversity techniques

for solar imaging are drawn in Section 6.

2. Fine-Resolution Imaging Techniques

Speckle imaging is a relatively mature technique

for obtaining fine-resolution images in the presence of
atmospheric turbulence. This technique requires the

collection of many short-exposure images of a static

object. The exposure time for each frame must be

short enough that the evolving atmosphere can be

regarded as frozen during the exposure. Clever pro-

cessing of this short-exposure time series affords the
restoration of fine-resolution information that would

be irretrievable if a single, long-exposure image were

collected (Dainty 1984). Speckle imaging requires ttle

collection of many images (typically 100 or more) so

that the ensemble average over the class of all possible
realizations may be approximated by an arithmetic

average over a finite number of realizations. Speckle-

imaging methods have been successfully adapted to

the solar-imaging problem (Keller _z yon der Liihe

1992, de Boer & Kneer 1992, yon der Liihe 19.q3,

1994).

Another technique whose aim is the restoration of

fine-resolution images in the presence of phase aberra-

tions is the method of phase diversity, first proposed

by Gonsalves (1979, 1982). H6gbom (1988) indepen-

dently proposed a special case of this same technique,

calling it the focal-volume method. Phase diversity

requires the simultaneous collection of two (or more)
short-exposure images. Typically, one of these im-

ages is the conventional focal-plane image that has
been degraded by the unknown aberrations. A sec-

ond image of the same object is formed by perturb-

ing the unknown aberrations in some known fashion.
This can be conveniently accomplished with a sim-

ple beam splitter and a second detector array that is

translated along the optical axis. An image collected

in this second optical channel will contain the effects



of the unknownphaseaberrationsbut will alsobe
influencedby theintentionaldefocus,whichaddsa
knownquadraticphase.It is somewhatremarkable
thatestimatesfortheobjectand the unknown aber-

rations can be made from these two images, given

the known quadratic phase diversity. The first use

of the method of phase diversity to retrieve fine-

resolution solar images was recently reported (L6fdahl

& Scharmer 1994a,b).

Intuition suggests that in stressing regimes (eg.

poor seeing or weak signal levels) a single pair of
phase-diversity images may not contain enough in-

formation to estimate jointly and with high fidelity

the object and wavefront. Even under favorable con-

ditions for which phase-diversity is able to produce

good wavefront estimates, we have observed that ob-

ject information at isolated spatial frequencies may

be irretrievably lost, resulting in object estimates

with significant artifacts. These cases motivate a

third fine-resolution imaging technique, referred to

as phase-diverse speckle (Paxman, Schulz, & Fienup
1992a, Paxman & Seldin 1994). As its name sug-

gests, phase-diverse speckle blends the fundamen-

tal concepts of phase diversity and speckle imaging.

Phase-diverse speckle requires the simultaneous col-
lection of one conventional short-exposure image and

at least one short-exposure image with phase diver-

sity, for each of multiple atmospheric realizations, as
depicted in Figure 1. This makes for a relatively sim-

ple data-collection scheme. Fortunately, the primary

strengths of the two constituent methods, namely the
added information content in a sequence of short-

exposure images and the wavefront identification pro-

vided by phase diversity, persist. Two different pro-

cessing approaches have been demonstrated with real

phase-diverse speckle data by L6fdahl and Scharmer

(1994b), referred to here as partitioned phase-diverse

speckle (PPDS, see section 3.2.) and by Seldin and
Paxman (1994), called joint phase-diverse speckle

(JPDS, see section 3.1.).

In order to draw precise distinctions between these

fine-resolution imaging methods and to establish no-

tation, we present our working data-collection model.
We concentrate on the data-collection model for phase-

diverse speckle, from which it can be seen that phase-
diversity and speckle-imaging data sets are special

cases. The incoherent isoplanatic image-formation

process is well modeled by the following discrete con-
volution:

g k(x) = sjk( - (t)
lz t

where f(x) is the object array, sjk(x) is an incoherent

point spread function (PSF) corresponding to the jth

atmospheric realization and the kth diversity channel,

gjk(x) is the corresponding noiseless image, and x is a
two-dimensional coordinate. The size of the noiseless

image array is determined by the field of view (FOV)
of the detector, whereas the size of the object array

should extend well beyond the FOV. Of course any

detected images will contain noise. The detected data

set is represented by {djk}, where

= 3;[9 k1, j = t,2,..., Jk = t,2,...,I; '

and where the general noise operator N'[. ] introduces

photon noise, additive Gaussian noise, and/or any
other noise sources that are appropriate. The data

set contains image frames from a total of J atmo-

spheric realizations and K diversity channels, where

typically It" = 2. Phase diversity is introduced by

including a known phase function in the system's co-

herent transfer function (Goodman 1968),

Pjk(u) = P(u)exp{i[¢j(u) + 0k(u)]} , (::;)

where P(u) is a binary function that serves as an ap-

propriately scaled model of the telescope pupil fun,'-

tion, Cj(u) is an unknown phase-aberration function
with contributions from the jth atmospheric realiza-

tion and the fixed telescope aberrations, 0k(u) is a

known phase-diversity function associated with tho

kth diversity channel, and u is the discrete spatial-

frequency variable. The phase-diversity functioa.

0k(u), will be zero in the conventional channel an,l

quadratic in the channel with defocus. It is conve-

nient to parameterize the phase-aberration timer ion

using coefficients for an appropriate set of basis tim,'-

tions (such as Zernike polynomials):

M

rn=l

The incoherent PSF, sjk(x), is just the squared m,),i-
ulus of the discrete Fourier transform (DFT) +)f th,.

coherent transfer function in equation (3). Thus tho

noiseless image, gjk(X), implicitly depends upon b,,t h
the object and aberration parameters.

The goal of phase-diverse speckle is to estimat, +lh,"

common object and each of the J phase-aberratl,,n



functions(orequivalentlytheaberrationparameters)
fromtheJK detected images, given the known phase-

diversity functions and the binary pupil function.
Notice that this model accommodates conventional

phase diversity when J = 1. When K = 1, the

data set corresponds to conventional speckle data. Al-

though conventional speckle processing seeks an ob-

ject estimate, no attempt is made to estimate the in-

dividual phase-aberration functions associated with

the atmospheric realizations.

3. Implementation of Phase-Diversity Tech-

niques

Both the ERIM and SVST research groups have

been working on phase-diversity techniques for sev-

eral years. Although the data-collection paradigm

and basic goals are common to both groups, the pro-

cessing implementations differ, reflecting differing re-

search paths, emphases, and insights. In this section

we summarize the salient features of these differing

implementations and quote references that provide

details of the processing.

3.1. ERIM Implementation

A guiding philosophy of the ERIM group has been
to model the forward problem (data collection) as ac-

curately as possible and to use this model as the basis

for solving the inverse problem (object and aberration

estimation) using estimation-theoretic tools.

3.1.1. ERLVI noise model and likelihood function

A Poisson noise model was selected because such

a model accurately accommodates the combined ef-

fects of signal-dependent photon noise and additive
Gaussian CCD readout noise. The number of photo-
conversions that occur at each detector element will

be a Poisson-distributed random variable with a mean

value prescribed by the noiseless image, gjk (x), given
in units of mean detected photons per pixel. Although

not explicitly shown here, an artificial bias is added to

the noiseless image to model the readout noise (Sny-
der, Hammoud, & White 1993). Assuming that the

detected signal at each detector element is statisti-

cally independent, the probability of acquiring a data

set {djk}, given the object and the aberration param-

eters for each atmospheric realization, is given by

J g gjk(x)dJh(Z)exp(_gjk(x))

PrE(d. l: II II II
j=l k---1 x

(5)
We use the principle of maximum likelihood to solve

the inverse problem. We jointly estimate the object

and aberration parameters by maximizing the log of
the likelihood function,

J K

L(f,_) = E E E [djk(x) lngjk(x)- gjk(x)] ,
j=l k----1 x

((3)

where a constant term that has no bearing on the

maximization procedure has been dropped and the

phase-aberration parameter estimates, ojm, have beell

lexicographically arranged into a single vector, (_. We

use the caret symbol,?, throughout to indicate an _s-

timate. Because aberration parameters for all J real-
izations are estimated simultaneously along wit h the

object parameters, we refer to reconstructions as joint
phase-diverse speckle (JPDS) estimates.

3.1.2. ERIM optimizatwn algorithm

The method of preconditioned conjugate gra(ii-

ents (Luenberger 1984), a conventional nonlinear-
optimization technique, is employed to maximize equa-

tion (6) over the set of object pixel values and ph,_e

parameters. Conjugate-gradients optimization is an
iterative procedure that, at each iteration, requires a

single gradient computation and a line search involv-

ing repeated likelihood evaluations. A closed-f,)rm
expression for the gradient of the log-likelihood 51n,--

tion has been derived (Paxman, Schulz, & Fi(_nup

1992b, Paxman & Seldin 1994) and is used extellsiv_l_
in the iterative search.

3.1.3. ERIM regularization

The maximum-likelihood estimates of the ot)je('t

pixels can be somewhat sensitive to noise and may
require a regularization strategy in which resoluti,m

in the estimate is traded for noise suppression. "I'h,'r, •

are many candidate regularization strategies, howov,,r

in this implementation the method of sieves {Sny,t,.r

_: Miller 1985) is employed. This is accomplished I,v

constraining the object estimate to be of the f()rm

X I



which is the convolution of an artificial Poisson point

process, ,f(z), with a smoothing (or sieve) kernel,

v(x). The maximum-likelihood formulation remains

unchanged. However, instead of estimating the ob-

ject, we now estimate the new underlying process,
f(x). The final object estimate is formed from f(x)

and v(x) using equation (7). The choice of an ap-

propriate sieve is the subject of ongoing research, but

the Gaussian kernel (Snyder & Miller 1985) has been

quite effective.

3.1.4. ERIM treatment of edge effects

In principle, the size of the FOV is limited by the
extent of the detector array or a field stop. How-

ever, the N × N FOV over which the convolutional

imaging model in equation (1) is valid will depend on

anisoplanatic effects. We therefore treat an N × N
subframe of data as an effective FOV (as if it were

collected by a detector array of that extent), and we

estimate the object-pixel values associated with these
elements. In addition, we estimate object-pixel values

within a guard band of width B pixels surrounding
the effective FOV. Although these guard-band pixels

do not have a corresponding detector element within

the effective FOV, they influence the data in two dis-

tinct ways. The first is through PSF sidelobes. For

example, a bright object point in the guard band will

create PSF sidelobes that spill into the effective field
of view. The second mechanism derives from random

image translations that occur as a result of differing

tilt components among the atmospheric realizations

in a phase-diverse speckle data set. Thus the main
lobe of a PSF associated with an object point in the

guard band may be directly sensed by detector ele-
ments within the effective FOV when the tilt com-

ponent for a particular realization provides the right
translation. The size of the guard band is selected so

that the influence of pixels far from the effective FOV

is negligible. This is related to the severity of the

aberrations and the resulting PSF side-lobe structure
and translations. The total number of object param-

eters is given by (N + 2B) 2.

Several aspects of the guard-band technique are

appealing. The guard-band technique affords the ac-

curate and efficient computation of the convolution

in equation (1) using a DFT, or a fast Fourier trans-

form (FFT) in practice. Although a DFT assumes

a periodic object, estimated values for pixels at the

outer rim of the guard band are allowed to "wrap
around" since their influence on the estimated data

is negligible. Another appealing aspect of the guard-
band method is that, unlike apodization techniques

(Paxman & Crippen 1990), the measured data are
unperturbed. Finally, the guard-band method allows

for the reliable retrieval of object pixels up to the edge

of the detector-limited FOV, so long as the effective
FOV is defined to abut the detector-limited FOV.

3.2. SVST Implementation

The purpose of the SVST-group implementation

is to develop a fast and reliable method for obtain-

ing nearly diffraction-limited images with the SVST
in La Palma. The code has been operational since

the spring of 1993 and is the first phase-diversity
code used to demonstrate, through several consis-

tency tests (LSfdahl & Scharmer 1994a,b), that the

technique works on real data. This is mainly due to

the successful implementation of methods to deal with

image boundary effects and for registration of focused

and defocused images pairs.

3.2.1. SVST noise models and metric

The SVST code is based on two modifications of

the error metric of Gonsalves and Chidlaw (1979),
which relies on a Gaussian additive noise model. This

model allows the estimation of the optimum object to

be performed implicitly while the estimation of the

optimum wavefront is done explicitly, which leads to

a straightforward and computationally efficient code.
However, the expression for the optimum object can-

not be used directly because it leads to unlimited am-

plification of noise at spatial frequencies where the
transfer functions of the focused and defocused im-

ages simultaneously approach very small values. This

happens because the expression for the restored ob-

ject gives a best fit to the data, including its noise.
Of course what is needed is an expression for the re-

stored object which is as accurate as possible, which

means that the observed images must be filtered to re-

duce noise in the restored object. We have also found

that high noise levels give slower convergence in the
iterative determination of the wavefronts.

Our first modification to the error metric of Gon-

salves and Chidlaw, therefore, is to introduce a noise

filter, which is applied both to the observed focused

and defocused images, in the expression for the error
metric.

The second modification consists of accounting for

the possibility that the signal-to-noise ratio (SNR)



maybesignificantlydifferentfortheimagechannels,
asin thecase of beam-splitters that do not distribute

light in equal proportions. With these two modifica-
tions the error metric becomes

= -FjSj,I'+vIHjD32-FjSj21" (8)
u

where, in contrast to the ERIM formulation, the sum-
mation is in the Fourier domain rather than the im-

age domain. Sjk is an estimate of the optical transfer

function (OTF), which is the Fourier transform of the

estimated PSF. Hj is the noise filter, and 3' is given
by

9 9

3' = (r_/c_5 , (9)

where _rt and _r2 are the RMS values of the noise of

the two channels. With Hj --- 1 and 3' = 1, the error

metric of Gonsalves and Chidlaw (1979) is recovered.

Following their derivation, which means estimating

F independently for each realization j, leads to an
expression for the estimated Fourier object,

DjIS;1 + "_Dj2S;2 (10)
= Hj igjll +  lg.l ,

where • used as a superscript denotes the complex

conjugate. The corresponding error metric can be
written as

Lj = y_ IEjl _ , (11)
tl

where the Fourier-domain error function is defined as

Ej = H, Dj2gjt - Djlgj2 (12)

Earlier analysis (Lgfdahl & Scharmer 1994b) has
shown that this method leads to good estimates of

the wavefront parameters but that in poor seeing the

restored objects are contaminated by artifacts from

poor SNR at isolated spatial frequencies. These ar-

tifacts are removed by combining the results of two
or more realizations to calculate the restored Fourier

object in a fashion that is well known in the literature,

D ^*
= HEJ= _DjIS_t + _ j2S], , (13)

where the OTFs must include the shifts necessary to

bring all images into co-alignment. The filter H is of
similar form to the filters of individual realizations,

Hi, but refers now to several atmospheric realizations.
These filters are specified in Section 3.2.3.

Because phase estimates derive from partitioned

data whereas object estimates derive from these phase

estimates in conjunction with a full phase-diverse

speckle data set, we refer to this processing approach

as partitioned phase-diverse speckle (PPDS).

3.2.2. SVST optimization algorithm

The expansion for Cj, equation (4), allows us to

write Sjk = Sjk(ajm), and therefore Ej = Ej(aj,,,).
Due to the nonlinear dependence of Ej on a,,_. the

minimum has to be found iteratively from an initial

estimate, usually ¢5 -= 0. This is implemented by

approximating changes in Ej by

OEj
m

and seeking corrections to the coefficients, (faj,,,, such

that the minimum of Lj is found in the next iteration.
This linearization results in a matrix equation of the

type
A._a+b=0, (15)

where the elements of A and b are sums of different

combinations of Ej and its partial derivatives with
respect to the aberration parameters (see L6fdahl ,k:

Scharmer 1994b). These derivatives involve the trans-

formed images, Djk, the OTFs, Sjk, and the OTF

derivatives, which are evaluated analytically. Note

that A is an M x M matrix, where M is the nnm-

ber of aberration parameters. This equation is solved

with the singular value decomposition (SV D) met hod,
as described in Section 3.2.3.

3.2.3. SVST regularization

In the SVST implementation, two methods of reg-

ularization (noise suppression) are employed: (l) the

observed images are low-pass filtered and (2) the
wavefront estimate is restricted by zeroing the least

significant singular values of the system matrix, A.

In order to provide noise reduction, the filters [ta

and H must be specified. Since the main priority is

to obtain good, restored images, it seems reasonable
to choose H such that the combined RMS error from

noise and the filter is minimized in the restored objoct,



/3. This leads to

/ EJ:I [Sjl[2_-71Sj212 /H=I-(IN, I_) I a ^ _Dj_;__I"- '

(16)
where (.) denotes an expectation value. In prac-

tice, the second expectation value is estimated with a

smoothing operation and the removal of noise peaks in

the high frequency regime, see (L6fdah] & Scharmer

1994b) for details.

The filter area expands automatically with the

number of included realizations, as information is

added in /_ at isolated frequencies and as the noise

influence is reduced at high frequencies by the av-

eraging of many realizations. The single-realization

filters, Hi, are defined as the special case where the

sum is over one realization.

Solving the matrix equation (15) directly for a

large number of wavefront parameters gives poor con-

vergence, or even divergence, in the iterative proce-

dure and poor wavefront estimates. One conjecture

is that this happens because the focused and defo-

cused images do not contain enough information to

distinguish between too many wavefront parameters.

The matrix equation is therefore solved by means of

the SVD method. The SVD method rearranges the

equations, so that solutions are sought for orthogonal

linear combinations of the parameters. These com-

binations are sorted in order of significance, as ex-

pressed by the singular values. Solving only the sys-

tem of equations with singular values larger than a

cutoff level, defined as a fraction of the largest sin-

gular value, restricts the solution to the subspace

spanned by the most significant linear combinations,

corresponding to the retained equations.

Recent experiments within the SVST group have

shown that using a cutoff level of 0.02 permits Zernike

parameters up through the 12th radial degrees and

azimuthal frequencies and generates wavefronts that

conform better to Kolmogoroffcovariance. This value

of the cutoff level was found by trial and error to give

only a 1% increase in the converged value for the error

metric L. The SVD method eliminates the problem

of over-parameterization in a simple and automatic

way, independent of the type of object used to deter-

mine the wavefront parameters. [t also significantly

improves the convergence of the iterations, thus en-

hancing the speed of the code.

With the low-order wavefront expansion used for

the current work, the inversion problem is well-conditioned.

We therefore used a cutoff of 0.0001, which effec-

tively de-activates the regularizing property of the

SVD method.

3.2.4. SVST treatment of edge effects

The error metric of Gonsalves, as expressed in the

Fourier domain, does not include the effects of bound-

aries of the images. Using FFTs to perform the con-

volutions needed for the calculation of the error func-

tions and its derivatives produces severe wrap-around

effects which can lead to very large errors in the de-

rived wavefronts when using small sub-fields. This

problem is avoided by transforming the error function

and its derivatives to the image plane. Parseval's re-

lation permits the summation in equation (11) to be

calculated in the image domain. Observing that the

wrap-around errors in the image-domain error func-

tion, ej, are concentrated to the boundaries of the

array, we use an array size that is large enough that

the wrap-around effects are accommodated outside

the effective FOV. The summation is then restricted

to the FOV. Apodizing with a modified Harming win-

dow function with a flat profile over the FOV fllrther

removes a high frequency pattern from the disconti-

nuities at the array boundaries (LSfdahl & Scharmer

1994b).

Like the ERIM algorithm, the technique affords

the accurate and efficient computation of the con-

volution in equation (1) using FFTs. Furthermore,

unlike pure apodization techniques (Paxmau &: ('rip-

pen 1990), the measured data are unperturbed in the

N × N area.

4. Solar Data

4.1. Data Collection

The data were collected with the 47.5 cm SVST in

La Palma on April 27, 1993 (see L6fdahl & Scharmer

1994b for details). The multi-image, real-time frame

selection system (see Scharmer 8z LSfdahl 1991) mon-

itored the fine-structure content in the focused chan-

nel and was set to select and store the best 100 image

pairs out of 1500 recorded during 30 second intervals.

The best seeing at the SVST usually occurs intermit-

tently, so the series used for this analysis was recorded

during 6 seconds of good seeing at 14:19 UT. This in-

terval is short enough that no significant evolution of

the granulation structure can take place. Observa-

tions were made through a 5.4 nm wide interference

filter centered at 470 nm. The known quadratic pha.se



difference of the two image channels corresponds to

a phase shift at the edge of the aperture equal to
0.985 + 0.06 waves.

Images were recorded by two synchronized EEV

video CCD cameras operating at 50 Hz (20 ms ex-

posure time) and digitized to 8 bits by two Kontron

DEC/IPS image processing systems. The image scale
is 0"0706 and 0('0732 per pixel in the x and y direc-

tions respectively. (The mean value, 0"0719 was used

for the inversions.) The image scales of the two image

channels differ by less than 0.1%, and the images are

rotated by less than 0.1 degrees relative to each other.

4.2. Preprocessing

The frames in the two channels were corrected with

their corresponding clark current and gain table cali-

brations. The gain table was determined by randomly
moving the telescope and averaging a large number of

frames. Since the bias level of the cameras changed

with illumination, the bias was determined from cov-

ered parts of the CCD sensor and taken into account
in the data reduction. Image-restoration techniques
can be sensitive to small but consistent errors in the

gain table. Despite the excellent results reported by
LSfdahl and Scharmer (1994b), a thorough analysis

of the sensitivity of phase-diversity restorations to
camera calibration errors has not been undertaken.

Therefore, a careful calibration procedure was fol-

lowed here to mitigate the influence of calibration
errors on our analysis. Following the procedure in

(Keller, Stenflo, &:von der Liihe 1992), the gain table
correction was improved by decomposing the Fourier

transform of the average image into a high-frequency
domain and a low-frequency domain. It is then as-

sumed that the signal in the high-frequency domain

is due to errors in the gain table only. The true av-

erage image may then be found with an appropriate
low-pass filter. Each frame in the sequence is then

corrected by multiplication with the ratio between

the low-pass filtered and the original average frame

according to

_-.,loo djk
_¢orr_¢ted = djk_ , (17)

where _. represents the spatial low-pass filtering. The
focused and defocused channels are treated sepa-

rately.

Each defocused image was further adjusted so that

its mean intensity was the same as its corresponding,

focused image. A close inspection of the defocused

images revealed a very weak, horizontal strip-pattern

that could not be removed with the gain-table calibra-

tion. This pattern was removed in the following way:

for each image the average column was determined

by averaging along the horizontal direction. A high-
order Legendre polynomial was subtracted from the

average column to extract the high-frequency strip

pattern and to remove any variations due to solar
structures. This difference was then subtracted from

every column in an image.

Shifts between consecutive frame pairs were deter-
mined via cross-correlation and then removed. 'File

same shifts were applied to both channels, and only

full pixel shifts were performed in order not to af-

fect any high-spatial-frequency solar signal. Note that

this prealignment was performed to accommodate the

speckle reconstruction and is not required for phase-

diverse speckle. Finally, 128 x 128 pixel subframes
were extracted in such a way that the average shift
between focused and defocused subframes amounts to

less than a pixel.

The entire sequence of 100 preprocessed image

pairs is publicai[y available and can be obtained by

contacting the authors at the Stockholm Observatory.

4.3. Processing

The 128 × 128 subframes were selected with a con-

ter region of 70 x 70 pixels that contains fine image
details that are useful for assessing restoration fid,.[it y.

This central region, or effective FOV, corresponds to

a 5if0 x 5(*0 patch, which is small enough to satisfy an

isoplanatic imaging assumption (L6fdah] L: S('harnwr

1994a,b). Both the conventional speckle and Sk'S'I" -

group restorations use all the data in the larger 128
x 128 subframes, but in both cases the restorati()ns

are most reliable over the center region due to ,.([_"

effects. The ERIM restoration procedure does w)t u_,'

data outside the 70 x 70 center region, but tlw lar_,'r
subframes were utilized in some cases to obtain a b,.t-

ter initial object estimate within the guard band [)f
size B = 21 pixels. All comparisons between restora-

tions are made over this central area, and henc_.f()rt h

we will restrict our attention to this region.

Five examples out of the sequence of 100 pairs ,)f

preprocessed subframes are found in Figure 2. l'h,'

top row contains conventional, focused images in lh,"
5_/0 × 5(t0 central region, and the defocused (-_unl,.r-

parts are found below. The RMS contrast (,[,.fin,.,t



hereastheratioofthestandarddeviationtothemean
intensity)averagedovertheentiresequenceis 7.6%
and4.8%for thefocusedanddefocusedimages,re-
spectively.Examplesofverygoodseeingareshownin
Figures2(a)and(b). Figure2(c)isanaveragecase,
and(d)and(e)areexamplesofaberratedimagesthat
yieldpoorconventionalphase-diversityrestorations.
It is interestingto notethedramaticeffectofdefocus
on theimagein (d).

Tofacilitatecomparisonsofrestorations,boththe
ERIM and SVSTgroupsparameterizedthe phase
aberrationswith Zernikepolynomials4 through15.
Frompreviousexperienceweknewthatthis levelof
wavefrontparameterizationleadstoawell-conditioned
inversionproblem.Thetwotilt components,Zernike
polynomials2and3,providesub-pixelpositioningof
theestimatedPSFs.ForthecaseofJPDS,thesepa-
rametersareincludedin thejoint-estimationprocess.
For PPDS,they arederivedin post-processingby
cross-correlatingthephase-diversityobjectestimates.
[f thedatawerenotprealigned,thentheuseof these
polynomialswouldbeevenmorecritical. Another
importantparameteris theregistrationbetweenthe
conventionalanddiversitychannels.Typically,the
ERIMapproachistoestimatetheseparametersalong
withtheaberrationsandtheobject.However,tokeep
theimplementationsassimilaraspossiblewedecided
to usepredeterminedvalues.Thetechniqueusedhere
for estimatingtheseparametersfromtheaverageof
thedatain thetwoimagingchannelsisdiscussedby
L6fdahlandScharmer(1994b).Othersystemparam-
eters,suchasthe amountandthesignof diversity
andthepixelspacing,werethesameforbothimple-
mentationsaswell.

5. Results

In thissectionwecompareestimatesmadewith:
(1)ERIMphase-diversitytechniques,(2)SVST-group
phase-diversitytechniques,and(3)conventionalspeckle
imaging.Weshowthat thetwoimplementationsof
phasediversityyieldvirtually identicalobjectand
aberrationestimates,but that theseobjectestimates
aresusceptibleto artifacts,indicatinga clearneed
for phase-diversespeckleestimation.Weshowquan-
titativelythat JPDSis slightlybetterthanPPDS.
Theinternalconsistencyof thephase-diversespeckle
estimatesisdemonstratedbyanalyzingestimatesde-
rivedfromdisjointdatasets,andexternalvalidation
isobtainedbycomparingtheserestorationswiththe

specklerestoration.Finally,theinfluenceof anisopla-
natismisconsidered.

5.1. Implementation Invarianee for Phase Di-
versity

The ERIM and SVST group's approaches to phase-

diversity techniques are quite distinct. The noise

model, estimator, optimization algorithm, regulariza-

tion, and edge treatment are some of the ways in

which the techniques differ. Despite these differen,'es,

we have discovered strong evidence to indicate that in
most cases the different implementations yield, for all

practical purposes, identical solutions. The first evi-
dence of this is presented here for the case of conven-

tional phase-diversity; i.e., restoration from a single

pair of images.

Figure 3 contains the conventional phase-diversity

object estimates derived from each of the 5 pairs of

images in Figure 2. The data in Figure 2 were selected
because the restorations derived from them offer a

nice comparison of the two implementations. The first

trend to note in Figure 3 is that the ERIM restora-
tions in the top row have slightly higher spatial fre-

quency content than the SVST group's restorations

in the bottom row, which is a direct consequence of

the different approaches to object regularization. The

attempt to restore more fine detail can have the url-

desirable side-effect of boosting high-frequen_'y arti-

facts, creating a slightly mottled appearance. Typi-

cally, when the SVST group's noise filter is appli,_d
to an ERIM restoration, the resulting estim_tto i_ _ i-

sually indistinguishable from the SVST vestorati¢_zl

Thus, the overall features in the restorations from the'
two implementations are often quite similar, but the

SVST group's restorations appear to be low-pass til-
tered versions of the ERIM estimates.

A useful measure of similarity between two _,sti-

mates, ._(x) and ._(z), is via the normalized RMS

error, c, defined via

1

= 2L[ t ) - -

where xr brings s_ into registration with fl, and av-

eraging is done over N 2 pixels. The misregistratiott.
zr, is estimated to sub-pixel accuracy by interpolat-

ing the peak of the cross-correlation of the two _sti-
mates. Phase-diversity estimates were made for th,

entire sequence of 100 image pairs, and the aw_ra_ •
error between the two implementations is ( = I 5"',.



with a standard deviation of 1.0%. Figures 3(a) - (c)
contain estimates for which the match is very good,

with errors of 0.8%, 1.2%, and 1.2%, respectively.

Figure 3(a) is an example of a high-quality phase-
diversity restoration because it compares favorably

with phase-diverse speckle restorations presented in

subsequent sections (see Figure 8). Visual cues can
be taken from the central portion of the restorations,

where there is a narrow intergranular lane and a small,

bright feature at the tip of the arrow. This small fea-

ture is slightly brighter in the ERIM restoration, re-

flecting a higher concentration of energy due to the
recovery of higher spatial frequencies. On the other

hand, mottle can be observed on some of the larger

granules. When the SVST-group noise filter for each

of the restorations in Figures 3(a) - (c) is applied to

the corresponding ERIM restoration, e drops to 0.4%,
0.9%, and 1.0%, respectively, the mottle disappears,
and the differences in the restorations become visually

imperceptible.

The restorations in Figures 3(b) and (c) degrade

somewhat with respect to (a), but what is also no-

table is that the ERIM and SVST group's restorations

share the same features, even when they are false. For

example, the small features near the narrow inter-

granular lane at the center of the image are smeared

into nearby granules in both of the restorations in

(c). Referring back to Figure 2(c), it is clear why
these features, which are blurred severely in the orig-

inal data, are not fully recovered. Careful inspection

of Figures 3(a) - (c) reveals that, despite differences

in spatial frequency content, features such as granule

shape and intensity variations along the granule edges
are virtually identical.

Greater differences between implementations are

observed in Figures 3(d) and (e), with e = 4.0% and

2.1%, respectively. The SVST group restoration is

superior to the ERIM restoration in (d), particularly

with respect to the large granule in the lower left.

Conversely, the ERIM restoration in (e) does not dis-
play the stripe artifact that runs at an angle through
the SVST restoration. Neither of these restorations

is particularly good, however. The trend observed
across the 100 restorations is that large discrepan-

cies between implementations are observed rarely and

only for cases when the blurring is too severe for con-

ventional phase diversity to be effective.

The other major component of phase-diversity restora-

tion is the estimation of the phase aberration. In

Figure 4 we show 12 scatter plots of Zernike coef-

ficient estimates from the two implementations for

polynomials 4 through 15. In each sub-graph the co-
efficients estimated by the two implementations for

each of the i00 image-pairs are scattered about the

line y = z. We note immediately the high correla-
tion between the aberrations derived from the two

implementations. Aside from one or two outliers, tile
aberration estimates are very consistent. One mea-

sure of agreement is formed by taking the square root

of the mean over the pupil of the average, squared

wavefront difference (averaged over 100 realizations).
This measure of RMS difference between implemen-

tations is a negligible 0.043 wave. This is well below
the well-known Marechal aberration-tolerance condi-

tion of 1/14th wave RMS phase error (Born & Wolf

1980). Systems that meet the Marechal condition are
considered to be well-corrected, producing imagery

for which the degradation would be difficult to per-
ceive. Thus, the aberration estimates from the two

implementations yield point-spread functions that are

visually indistinguishable.

5.2. Partitioned vs. Joint Estimation in Phase-

Diverse Speckle

Aside from implementation invariance, important

conclusions to draw from the results presented ill Fig-
ure 3 are that even an above-average conventional

phase-diversity restoration like the one in (c) still suf-
fers from residual blur, and that in some cases the

restorations are dominated by artifacts. This obser-

vation was made by L6fdahl and Scharmer (1994b)

and led to a partitioned phase-diverse speckle (PPDS)

estimation strategy (Section3.2.1.) in which pairs of
restorations were combined to produce much higher

quality object estimates. Similarly, Seldin and Pax-

man (1994) demonstrated that restorations from the
same data using a joint phase-diverse speckle (JPDS)

algorithm (Section3.1.1.) became better and more

consistent as image pairs were added. From these
results it is clear that there is a distinct advantage

to using phase-diverse speckle instead of conventional

phase diversity. Given the need for phase-diverse
speckle, a natural question to address is whether there

is an advantage to using the joint-estimation approach

as opposed to a partitioned technique.

As with conventional phase diversity, we find that

object estimates derived from the JPDS and PPDS

algorithms are virtually identical, with a negligible
difference ofe = 0.3% when the entire sequence of 100

image pairs is used. Not surprisingly, the JPDS and
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PPDSrestorationsarealsovisuallyidentical,asob-
servedin Figures8(b)and(c),respectively.Intuition
suggeststhat JPDSwouldprovidebetterestimates
of boththeobjectandtheaberrationsbecausethe
ratioof thenumberof measurementsto parameters
increasessignificantlywith theadditionof eachnew
pairof aberratedimagesof thesameobject.How-
ever,theJPDSandPPDSrestorationsaresosimilar
forthesedatathat weareleftto wonderif thereisa
distinctadvantageto ajoint-estinlationapproachin
thisregime.

Theobjectestimatesalonedonot tell thewhole
story,andsothe accuracyof the phaseaberration
estimatesmustalsobeconsidered.Giventwoaber-
rationestimates,onefromconventionalphasediver-
sity andtheotherfromJPDS,weseekto quantify
theaccuracyof each.To dothiswithouttheaidof
asimulation,wegenerateanestimatedpoint-spread
function,sjk, from each wavefront, convolve it with
the corresponding object estimate, and compare the

resulting image estimate to the measured image. We

define a fidelity metric for the jth wavefront estimate,
A

Cj, in a normalized mean-squared error sense as

1

R2(gj) = E [djk(x) -
[_-_ E_/(x)] 2 , (19)

where averaging is done over N 2 pixels, and gjk is

formed from f and the estimated point-spread func-

tion, sjk, which is a function of Cj, via the convolution

= - x'). (20)
X j

Note that the numerator of equation (19) is iden-
tical (aside from a sign change) to the log-likelihood

function for phase diversity under an additive Gaus-

sian noise model (Paxman, Schulz, & Fienup 1992b).

Smaller values of R imply a better match of the

object and aberration estimates to the data. We
evaluate R(¢j) for j = 1,2,...,100 for both the
ERIM JPDS wavefronts estimates and the SVST-

group phase-diversity wavefront estimates. When

evaluating R for the JPDS aberration estimates, the

100-realization JPDS restoration in Figure 8(b) is

used for f. Similarly, the SVST-group conventional

phase-diversity aberrations estimates are evaluated
using the 100-realization PPDS object estimate in

Figure 8(c).

Figure 5 is a scatter plot of R(¢j) for PPDS ver-

sus R(¢j) for JPDS. The mean fidelity metric for

the JPDS wavefronts is 1.3%, compared with 1.5%
for phase diversity. Since the object estimates used

to generate the fidelity metric differ by only 0.3%,
we can conclude that most of the error is due to

sources other than the object. In 97 of 100 cases,

the fidelity metric for the JPDS aberration estimate

is less (better) than the wavefront derived with con-

ventional phase diversity, and the fidelity metrics are
very close for the other 3 cases. There is a fairly

strong linear correlation that indicates that the rise

and fall in fidelity metric tracks fairly well for the
two cases. Nonetheless, it is clear that. there are

15 to 20 cases for which the phase-diversity fidelity

metric is significantly worse in a relative sense. In
an absolute sense we are observing only very small

improvements in the aberration estimates, which im-

proves the fidelity metric by only a fraction of a per-

cent. Apparently, phase-diversity wavefront estimates

are so good in this regime that there is little room

for improvement when using JPDS. Even so. it re-

mains necessary to use multiple realizations to ob-

tain a good object estimate via PPDS. The reason
for this is simply that the OTF for any one realiza-

tion tends to reach very low values at isolated spatial

frequencies which vary from realization to realization.

This explanation is consistent with the ringing arti-

facts found in Figures 3(d) and (e). The fact that the
JPDS wavefront estimates are almost always better

than the PPDS counterparts shows that the joint-

estimation approach is a successful concept which is

likely to be superior to PPDS in different imaging

regimes; e.g. reduced signal levels, smaller isopla-

natic patches, stronger aberrations, more aberration

parameters, etc.

5.3. Internal Consistency of Phase-Diverse

Speckle Estimates

Both conventional phase diversity and phase-diwrse

speckle imaging have been investigated extensively
with past simulation studies. These simulations are

an important component in establishing the credi-

bility of phase-diversity image restoration. An ew_n

more important step was taken by using real solar

granulation data to demonstrate the consistency of
aberration estimates from neighboring image patches

(LSfdahl & Scharmer 1994b). A measure of inter-

nal consistency with respect to object estimates was
demonstrated with the same data set for the case of

JPDS (Seldin & Paxman 1994) applied to a small
number of realizations. In this case several ,IPI)S
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restorationsweremadeusingdifferentsetsof im-
agescollectedwithinsecondsofeachother,andthese
restorationswereshownto behighlyconsistentwith
eachother.Weexplorethisin moredetailhereusing
manymorerealizations,to furtherdemonstratethe
consistencyofobjectestimates.

Objectestimatesarearandomprocesswithamean
anda variance,andanyonerestorationisa sample
drawnfromsucha process.Likeotherrandompro-
cesses,themeanof anobjectestimatecanbeesti-
matedusingasamplemeanderivedfromindependent
trials.Thesameis,of course,trueforestimatingthe
variance.Wedefineour trialsasrestorationsof the
sameobjectwithdifferentinputdata.Forexample,
weformedaconventionalpha.se-diversityrestoration
foreachof the 100imagepairs,andfromthese100
restorationswecomputeda samplemeanandvari-
ance.Wealsoformedsamplesof 2-realizationJPDS
restorationsbypartitioningthesequenceof 100pairs
into50disjointsets,containingJ = 2 image pairs

each. The same partition of the sequence into dis-
joint sets was done for the cases of J = 5, 10, 25,

and 50 realizations, and restorations were made for

every set. Examples of one restoration for each of

the 6 cases investigated are shown in Figure 6. The

1- and 2-realization restorations in Figures 6(a) and

(b), respectively, have visible artifacts, but restora-
tion quality is quite good in the 5-realization case in

Figure 6(c). It is difficult to see much variation across

the 10-, 25-, and 50-realization restoration examples

in Figures 6(d) - (f), respectively.

To quantify the stability of the JPDS estimates as
a function of the number of realizations, we consider

the sample variance about the sample mean. This

is a measure of internal consistency: if the variance

of restorations formed from disjoint sets of data de-

creases as the number of realizations increases, then
we conclude that restorations become more consistent

with more realizations. If this variation is also quite

small, then we can also conclude that any random
false detail is too small to be considered problematic.

A common method for measuring the variance of an
estimator about its mean is via the coefficient of vari-

ation (Frieden 1983), the square of which is defined

at each pixel as

1 )--_f=l[)_(x) - f(x)] 2 (21)

where ._ is the gth sample from a set of L (= iO0/J),

J-realization restorations, and

L

/x-()= L
t=l

(22)

Figure 7 plots the spatial average of c_ (x), denoted

by 6v, as a function of the number of realizations. By

averaging over the pixels, we characterize the varia-

tion about the mean at a pixel with a single number.
The error bars on this plot represent the confidence

in 6_ to within one standard deviation. The stan-

dard deviation of cv was computed as the square root

of the variance of equation (21), which takes into ac-
count the correlation of c_ (x) from pixel to pixel. We

note that Figure 7 displays a monotonic behavior from
which we conclude that estimates become more con-

sistent as realizations are added. Also, the greatest

gains in consistency are made for small numbers of

realizations, and _ is less than 1% for J = 10. Be-

yond this point the gains are small, supporting our

visual assessment of the sample restorations in Fig-

ure 6. Figure 7 does not indicate how the mean im-

ages change as a function of number of realizations.
The RMS error between any pair of mean images has

an average of about e = 0.3%, which reflects a high

consistency for the expected restoration regardless of
the number of realizations used.

5.4. External Consistency of Phase-Diverse

Speckle Restorations

In the previous section we cited past evidence and
presented new results that confirm the internal consis-

tency of phase-diverse speckle object estimates. Ex-

ternal validation of phase aberration estimates from

conventional phase diversity has been demonstrated
via the fixed aberrations of the SVST. These aber-

rations were estimated over time as the SVST turret

position changed and were shown to evolve accord-

ing to theoretical predictions (LSfdahl & Scharmer

1994b). Speckle imaging provides another indepen-

dent way to validate the object estimates. For this
work, the Fourier amplitudes have been reconstructed

with the Labeyrie (1970) method, whereas the phases

have been estimated with the Knox and Thompson

(1974) technique. The Fourier amplitudes were cal-

ibrated with a model of the Earth's atmosphere by

Korff (1973). Fried's (1966) parameter, the only free
parameter of the atmospheric model, was estimated

with the spectral ratio technique (von der Liihe 198.1)

to be re = 18.5 cm. A detailed description of the ira-
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plementationof theabove-mentionedtechniqueshas
beengivenbyyonderLiihe(1993).

Figure8(a) containsthe specklereconstruction,
whichshouldbecomparedwith the 100-realization
phase-diversespeckleestimatesfromJPDSandPPDS
in (b) and (c), respectively.Notethat theoverall
featuresareidenticalin all 3 restorations,including
subtleintensityvariationsalongthe edgesof some
granules.Thereis noevidenceof artifactualdetails
ineitherof thephase-diversespecklerestorations.In
fact, the specklerestorationappearsto beslightly
smoother,with lesshigh-frequencydetail. Torein-
forcethe importantpointthat 100imagepairsare
manymorethanrequiredfor phase-diversespeckle,
weshowexamplesof JPDSandPPDS5-realization
restorationsin Figures8(d)and(e),respectively.It
is clearthat excellentrestorationscanbeobtained
with a factorof 20 fewerrealizationsthanusedfor
(b) and(c). Becausea reliablespecklereconstruc-
tionlikethatin (a)couldnotbeobtainedwithsofew
images,phase-diversespecklecanbeviewedasanim-
portantmethodforimprovingboth the spatial and the

temporal resolution of ground-based observations.

The restorations in Figures 8(b) and (c) differ from

the speckle restoration in (a) with an error ofe = 2.0%
and have an error of only e = 0.3% between them.

Some of the disparity is due to differences at high

spatial frequencies, but we have found that small dif-

ferences exist at low spatial frequencies as well. Fig-

ure 9 plots the radially-averaged power spectra of

the 3 restorations. Each spectrum was formed by

first applying a Hanning window to the restoration,

performing a 2-D Fourier transform, and then tak-
ing the magnitude-squared. After appropriate scal-

ing, each spectrum was integrated over annuli in the

spatial-frequency domain. As expected, the JPDS

and PPDS spectra are very consistent out to 80%
of the diffraction-limited cutoff frequency, and differ-

ences beyond this point can be attributed to differing

regularization techniques. We note that the power in
the speckle reconstruction begins to depart from the

others at about half of the cutoff frequency, and that

the speckle reconstruction appears to have approxi-

mately 30% more power than the others up to this

point.

Defining contrast as the ratio of the standard de-

viation to the mean, we find that the contrast of the

speckle restoration is higher (12.6%) than either of the

phase-diverse speckle estimates (11.0%). One plausi-
ble explanation for this could be due to an insufficient

representation of the phase aberrations with only the

first 15 Zernike polynomials. It has been demon-
strated in simulations that with a zonal (pixel-by-

pixel) parameterization of the pupil, the full contrast
of the object can be recovered (Seldin, Paxman, ,k EI-

ste 1995). These same simulations consistently under-

estimated the contrast when using only the first 15

Zernike polynomials. On the other hand, the speckle
reconstruction relies on a model for the atmospheric

turbulence and does not account for fixed telescope

aberrations. So the possibility of an underlying model

mismatch remains, and the correctness of the restored

contrast remains an open issue that is best studied

with controlled experiments. Despite this significant

difference in contrast, we conclude that the phase-

diverse speckle estimates are consistent with and pro-
vide finer detail than the reconstruction obtained wit h

an accepted speckle-imaging technique.

5.5. Evidence of Anisoplanatism

Space-variant blur is encountered when objects ex-

tend beyond the isoplanatic patch associated with

the intervening atmosphere. The imaging model

used here is spaee-invariant, and any anisoplanalism

should degrade the quality of the restorations. Phase-
diverse speckle object reconstructions are suscepti-

ble to geometric distortions associated with a,/iso-

planatism because of the underlying assumption {,f

a time-invariant object across all realizations. Fur-

thermore, intuition suggests that JPDS wavefront ,,s-
timates, unlike PPDS wavefront estimates, could also

be hurt by these inter-realization geometric dist(_r-
tions. The fact that both PPDS and JPD.q su,',-,,,.d

so well here is due in part to the selection ,_f :_

appropriately-sized image patch, which was guide, t I,v

previous analysis of this data sequence by L6fdah[ and

Scharmer (1994b).

Despite the successful restorations obtained with

these images, there is still evidence of anisoplanat _m
in this sequence. To characterize the geometric ,lis-

tortion, each image, djk, in the sequence was rosam-
pled (destretched) to match the estimated image..,_j_

(eq. [20]), formed from the 100-realization JPI)_ ,.,-

timate in Figure 8(b). The destretching for th,, .jth
realization is estimated by computing local ,'orr,'la-

tions between djk and gjk on a 3 x 3 segnwntati,,n

of the images for both the conventional and diw,r_it.v
channels. The 9 shifts obtained from the 3 × :_ gri,I, ,f

correlations are averaged over the two channels, ami a
coordinate transformation that defines the dest r,q,h-
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ingfunctionis formedbyinterpolatingbetweenthe
averageshiftsat thecenterof eachsegment.The
degreeof distortion,or imagewarping,canbesum-
marizedwithasinglenumber

w = v/zj 2 + ud2 , (23)

where zd and Yd are the RMS shifts in the two direc-

tions computed over all segments. Thus, large values
of w reflect large deviations from a global shift and a

higher degree of warping across the image.

Figure 10(a) plots w (in units of pixels) versus the

fidelity metric, R, for each of the 100 JPDS phase
aberration estimates. There is a clear correlation

(0.74) between R and the amount of distortion - re-

alizations with the worst distortion yield the worst

fidelity metric. In contrast, there is no apparent cor-
relation between the RMS of the estimated aberra-

tions and R, indicating that the strength of the tur-
bulence is not the primary source of poor estimates.

A new sequence of destretched images, djk, was cre-

ated, and the fidelity metric was recomputed via equa-

tion (19) using djk in place ofdjk. Note that the same

phase aberration estimates were used to compute the

"destretched" fidelity metric, and that the most im-

provement in this metric occurs for the cases with

large distortion. Remarkably, the improvement in the

average fidelity metric after destretching is 3 times
greater than the corresponding improvement when

moving from conventional phase diversity to phase-

diverse speckle. Figure 10(b) also suggests that aber-
ration estimates are not hurt by the joint-estimation

approach at this level of anisoplanatism. Although
the improvement in the fidelity metric is only a frac-

tion of a percent, we conclude that all phase-diversity
techniques would benefit from the accommodation of

anisoplanatic effects, particularly in the presence of

stronger turbulence. An obvious approach would be

to apply JPDS or PPDS to destretched data. Al-

ternatively, parameters in an anisoplanatic-imaging

model could be directly estimated from the original

data (Paxman, Thelen, & Seldin 1994).

6. Conclusions

In this investigation, we have evaluated phase-

diversity techniques, including two implementations
of these techniques, and provided credibility for the

scientific utility of these relatively novel observational

techniques for solar astronomy. Using data collected

with only modest instrumentation, we have recon-

structed near diffraction-limited images of solar gram
ulation.

6.1. Comparison of Implementations

The ERIM and SVST implementations of phase-

diversity techniques have been compared. In spite of

significant differences in noise model, estimator, op-
timization algorithm, regularization, and edge treat-

ment, the phase-diversity estimates were found to be

virtually identical. The invariance of estimates un-
der differing noise models can be understood by con-

sidering the similarities of the Poisson and additive

Gaussian noise models for this application. Poisson

noise is proportional to the square root of the inten-

sity at each detector element. In addition, when the

intensity is sufficiently large, the cumulative distribu-
tion function for each Poisson random variable is well-

approximated by a normal distribution (Feller 1968).

For low-contrast images such as aberrated and/or de-

focused images of solar granulation, the Poisson noise
will be approximately constant across the image, thus

resembling additive Gaussian noise. In fact. our re-
constructions suggest that the Gaussian noise model

is entirely adequate for imaging solar granulation

However, the Poisson model is the more gen+'ral of lh+,

two for describing photo-detection events, and it can

also be expanded to accommodate additive (;aussian
noise sources, such as CCD readout noise. A Poisson

model may be important when using low-noise cam-

eras to image high-contrast scenes such as sunspot

umbrae with umbral dots or for photon-limited imag-

ing scenarios such as narrow-band solar imaging ¢,r

nighttime astronomy.

An advantage of the Gaussian noise model is that

it leads to an optimization search within a reduced-

dimension parameter space. The resulting est im at ion

algorithm, as currently implemented by the SVS[

group, requires significantly fewer operations than the
current ERIM algorithm, when operating with a suf-

ficiently small number of aberration parameters. M

The SVST algorithm computations are dominated by
Fourier transform calculations. The total number ,ff

FFTs required to perform a phase-diversity recon-

struction is I. (7 + 4M), where I is the number of it-
erations. For the data analyzed here, iterations w,,r,,

stopped when the RMS of the change of the waw,-
front was less than 10 -a radians, which is quite ,-,_n-

servative. This stopping criterion led to an a_'era_¢" ,,f

about I = 12. Quality reconstructions are obtatn,.<l

if iterations stop when the metric changes I,_ss th:m

14



0.5%,giving(I) = 4.7.With M = 12 and I = 5, it
takes 275J FFTs to process J realizations with the

SVST program.

The ERIM algorithm is also dominated by two-

dimensional FFTs. Approximately (3V+4)JK FFTs

are computed per iteration, where V is the number
of likelihood evaluations made during the conjugate-

gradient line search. Because this expression is inde-
pendent of the number of aberration parameters, M,

there is no additional computational cost per iteration

for a fine parameterization of the wavefront. For the

data analyzed herein, V = 10 and typically the num-
ber of iterations performed was I = 60. These pro-

cessing criteria are very conservative. We have since
shown that visually indistinguishable object estimates

are produced when relaxing the line search to V = 5

and stopping the iterations when the metric changes

by 0.02%, giving approximately I = 40. Using V = 5,

I = 40, and If = 2 we see that the ERIM code re-

quires approximately 1520J FFTs, considerably more

than is required for the SVST code. In cases with M

sufficiently large, such as a zonal aberration param-
eterization (i.e. using pixels in the pupil), the ERIM

code probably has a computational advantage, owing

to the independence of the FFT count per iteration
on M. It should be remembered that neither of the

algorithms has been truly optimized with respect to
computational efficiency.

Another implementation issue is whether estimates

are made in a joint or a partitioned fashion. Object
estimates were found to be virtually identical using

JPDS and PPDS. However, JPDS aberration esti-

mates were found to be slightly more consistent with
the data than were the PPDS estimates. Although

the small improvement in aberration estimates pro-
duced by JPDS is of little practical value in the re-

constructions shown, it does suggest that a joint-

estimation strategy could be of value when imaging

in the presence of stronger turbulence or in regimes

of reduced signal strength. We also believe that im-

provement due to joint estimation is currently lim-
ited by anisoplanatic effects that vary from realiza-

tion to realization and by the under-parameterization

of wavefronts. Both ERIM (Seldin, Paxman, & El-

ste 1995) and SVST groups have found evidence that
15 Zernikes is an under-parameterization of the wave-

fronts, but the optimal number of wavefront parame-

ters remains an open issue.

When comparing the two approaches to treating

edge effects, we see that both methods effectively han-

die problems associated with objects that extend be-

yond the FOV. The ERIM guard-band method allows

for the reliable retrieval of object pixels up to the edge
of the detector-limited FOV, providing more efficient

use of camera pixels and rendering a method for utiliz-

ing interesting phenomena recorded along the camera
borders.

6.2. Comparison of Techniques

Although estimated wavefronts were found to be

essentially the same for all phase-diversity techniques,
our results reiterate that phase-diverse speckle object

estimates are significantly better than phase-diversity

estimates. This can be understood by considering the

OTFs involved. The OTFs for any one realization

tend to reach very low values at isolated spatial fre-

quencies, and the inversion of single-realization data

can give false detail at these spatial frequencies. How-

ever, these troublesome spatial frequencies vary from
realization to realization so that when multiple real-

izations are used, the likelihood of restoring false de-

tail is dramatically diminished. Furthermore, we have

quantitatively shown that estimates become increas-

ingly more consistent as the number of realizations is
increased. The added value of additional realizations

can only increase when anisoplanatism is accommo-
dated.

Conventional speckle imaging can also be ,-ore-

pared with phase-diverse speckle. Speckle imaging
has the hardware advantage that only a single speckle

camera is required. On the other hand, simple op-

tical designs have been implemented that put both

diversity images on a single camera, at the expense
of reduced FOV. Speckle imaging also offers a com-

putational advantage, requiring only J FFTs of size
N 2. Phase-diverse speckle has an important advan-

tage in that excellent object reconstructions can be
derived from a relatively few (J _ 5) realizations,

whereas speckle imaging requires a much larger num-

ber (J ,_ 100) of realizations. With fewer realizations
required, phase-diverse speckle can more readily be
used for time-series observation of the evolution of

solar phenomena. Whereas conventional speckle re-

quires a separate speckle calibration step that relies
on an atmospheric model (yon der Liihe 1993) that

normally doesn't accommodate fixed telescope aber-

rations, phase-diverse speckle requires no such step

and is not hurt by fixed aberrations. In fact, because

phase-diverse speckle estimates individual phase aber-
ration realizations, these estimates can be averaged
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to determinefixedaberrations(LSfdahl& Scharmer
1994b).

6.3. Future Directions

Althoughthereareissueswhichdeservegreater
study,includingoptimalwavefrontparameterization,
theeffectsofanisoplanatism,andtheeffectsofatmo-
sphericevolutionduringanexposuretime,wecon-
cludethat phase-diversitytechniquesaresufficiently
maturetobeusedroutinelyforsolarobservations.A
newphase-diversitybeam-splitterthat putstwodi-
versitychannelsonasinglelargeCCD,givingeacha
usefulFOVof approximately700 × 1000 pixels, has

recently been installed at the SVST. This is avail-

able as a common-user instrument. Excellent data,

consisting of time sequences (several hours in dura-

tion) of active regions, have already been obtained.

In addition, scientific data, consisting of images of

bright points, pores, sunspots, plages, and network

magnetic fields in white-light, Ha, and MgIb2 that

cover up to several hours have been recorded with a
multi-camera system at the Vacuum Tower Telescope

at Sacramento Peak. Preliminary analysis of both

data sets confirm our expectation that phase-diverse

speckle opens a new observational window, provid-

ing excellent spatial and temporal resolution over ex-
tended periods of time.

We are also in the process of migrating phase-

diverse speckle methods to faint-object regimes, in-

cluding narrow-band observations in solar astronomy

and nighttime astronomical observations. As an ex-
ample, we have recently used phase-diverse speckle

to successfully correct for residual aberrations in an

adaptive-optics system when imaging binary stars

(Seldin, Paxman, & Ellerbroek 1995).
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Fig. 1.-- Data-collectionschemefor phase-diverse
speckle.A conventionalshort-exposureimageand
anadditionalshort-exposureimagethatis intention-
ally defocusedaresimultaneouslycollectedforeach
of multipleatmosphericrealizations.

Fig. 2.-- Examples of preprocessed data. Five real-

izations of conventional (upper) and diversity (lower)

data are shown. Examples of good seeing are shown

in (a) and (b). The image pair in (c) represents an av-

erage case, and (d) and (e) contain images from which
conventional phase-diversity restorations are poor.

Fig. 8.-- Speckle and phase-diverse speckle restora-
tions. (a) 100-realization speckle-imaging restora-

tion; (b) 100-realization ERIM joint phase-diverse

speckle restoration; (c) 100-realization SVST-group

partitioned phase diverse speckle restoration: (d) 5-

realization ERIM restoration; (e) 5-realization SVST-

group restoration.

Fig. 3.-- Examples of phase-diversity object es-
timates from ERIM (upper) and the SVST group

(lower). The five restorations in (a)- (e) are derived
from the corresponding data in Figure 2.

Fig. 4.-- Scatter plots of Zernike coefficients of esti-
mated aberrations using 2 phase-diversity implemen-
tations. The SVST and ERIM estimates for the entire

sequence of 100 images for coefficients 4-15 are shown.

The high correlation is strong evidence of implemen-
tation invariance.

Fig. 5.-- Scatter plot (over realization) of the fidelity

metric R(¢j) for SVST-group phase diversity versus

ERIM phase-diverse speckle. R reflects the accuracy
of the aberration estimates, and we observe that the

joint phase-diverse speckle approach yields a better
fidelity metric in 97 out of 100 cases.

Fig. 9.-- Radially-averaged power spectra for

speckle, ERIM joint phase-diverse speckle (JPDS),
and SVST-group partitioned phase-diverse specklo

(PPDS) restorations. The diffraction-limited cutoff
frequency has been normalized to unity.

Fig. 6.-- Representative object restorations for dif-
ferent numbers of realizations. The restorations in

(a) - (f) are derived using J image pairs for J =
l, 2, 5, 10, 25, 50, respectively. Note that we show only

one of many candidate restorations for each value of
J, but the same input image-pairs are always retained

as J is increased. The restorations are quite consis-
tent for J > 5.

Fig. 7.-- Spatially averaged coefficient of variation,
d,, in the object estimate as a function of number
of realizations, J. The error bars were computed us-

ing the variance of cv and are one standard deviation
above and below the estimated value.

Fig. 10.-- Scatter plots of degree of distortion. ,_.
versus fidelity metric, R, before and after destrot,'h-

ing of the data. (a) The fidelity metric for tile [{l{}

ERIM phase-diverse speckle aberration estimates is

correlated with the distortion; (b) After destret,'hin_

the images, these same estimates yield fidelity m,.t-
ric values that are smaller on average and much I,.ss

correlated with the original distortion.
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